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REZIME: 
U ovom radu izvedena je diferencijalna jednadžba koja daje odnos između 

Loschmidtove konstante, Avogadrove konstante i brzine zvuka u plinovima 

kao funkcije termodinamičkih svojstava plina (pritisak, temperatura i 

volumen). Kako bi se potvrdila valjanost izvedene jednadžbe, omjer 

konstanti NL/NA i odstupanje omjera NL/NA za nekoliko idealnih plinova 

(vodik, helij, ugljikov monoksid, dušik, kisik, ugljendioksid, metan) 

izračunati su pomoću jednadžbe stanja idealnog plina (Pv=RT). Izračun 

omjera konstanti NL/NA i odstupanja omjera NL/NA od vrijednosti za 

plinove u standardnom stanju (tj. temperatura 273.15 K i pritisak 101325 

Pa) pokazuje dobro slaganje s objavljenim rezultatima u literaturi, s 

obzirom na činjenicu da literaturni podatak omjera NL/NA iznosi 

0,04461498 u standardnom stanju. Kao drugi korak za potvrdu valjanosti 

izvedene jednadžbe, omjer konstanti NL/NA i odstupanje omjera NL/NA za 

nekoliko stvarnih plinova (vodik, helij, ugljenmonoksid, dušik, kisik, 

ugljendioksid, metan ) izračunati su korištenjem van der Waalsove 

jednačine stanja stvarnog plina. U ovom slučaju rezultati proračuna 

također pokazuju dobro slaganje s referentnom vrijednošću. 
  
 Short original scientific paper 

SUMMARY: 
In this paper, a differential equation is derived relating to the relationship 

among the Loschmidt constant, the Avogadro constant, and the speed of 

sound in gases as a function of the thermodynamic properties of the gas 

(pressure, temperature, and volume). To confirm the validity of the derived 

equation, the ratio of the constants NL/NA and the deviation of the NL/NA 

ratio for several ideal gases (hydrogen, helium, carbon monoxide, 

nitrogen, oxygen, carbon dioxide, methane) were calculated using the 

ideal-gas equations of state (Pv=RT). The calculation of the ratio of the 

constants NL/NA and the deviation of the NL/NA ratio from the value for the 

gases at standard state (i.e., temperature 273.15 K and pressure 101325 

Pa) is in a good agreement with the results published in literature, given 

the fact that the literature data of the NL/NA ratio is 0.04461498 at 

standard state. As the second step in confirming the validity of the derived 

equation, the ratio of the constants NL/NA and the deviation of the NL/NA 

ratio for several real gases (hydrogen, helium, carbon monoxide, nitrogen, 

oxygen, carbon dioxide, methane) were calculated using the real-gas Van 

der Waals equation of state. In this case, the calculation results are also in 

agreement with the reference value. 

 
1.  INTRODUCTION  
In 1811, Amadeo Carlo Avogadro, an Italian 
professor of physics, suggested an important 
hypothesis that equal volumes of all gases at 

the same temperature and pressure contain the 

same number of molecules, or the volume of a 

gas at a given pressure and temperature is 

proportional to the number of atoms or 
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molecules regardless of the nature of the gas, 
what is well known as the Avogadro's 
Principle (law) or Avogadro's constant 
(number). The greatest problem Avogadro had 
to resolve in his time was the confusion 
regarding atoms and molecules. One of his 
most important contributions was clearly 
distinguishing one from the other, stating that 
gases are composed of molecules, and these 
molecules are composed of atoms. Avogadro 
did not actually use the word "atom" as the 
words "atom" and "molecule" were used 
almost without difference. He believed that 
there were three kinds of "molecules," 
including an "elementary molecule" ("atom") 
[1]. Thus, the hypothesis was extremely 
visionary and its confirmation, using the 
kinetic theory of gases, came decades later.   

The scientific community gave no great 
attention to his theory, so Avogadro's hypothesis 
was not immediately accepted. The studies by 
Charles Frédéric Gerhardt and Auguste Laurent on 
organic chemistry made it possible to demonstrate 
and explain the Avogadro's law, i.e. why the same 
quantities of molecules in a gas have the same 
volume. Unfortunately, related experiments with 
organic substances showed exceptions to the law. 
This was finally resolved by Stanislao Cannizzaro, 
as announced at the Karlsruhe Congress in 1860, 
four years after Avogadro's death. Cannizzaro 
explained that these exceptions were due to 
molecular dissociations at certain temperatures, and 
that Avogadro's law determined not only molecular 
masses, but atomic masses as well. In 1911, a 
meeting in Turin commemorated the hundredth 
anniversary of the publication of the Avogadro's 
classic 1811 paper. Thus, Avogadro's great 
contribution to chemistry was recognised. Rudolf 
Clausius, with his kinetic theory on gases, gave 
another confirmation of Avogadro's Law. Jacobus 
Henricus van't Hoff showed that Avogadro's theory 
was also relevant for dilute solutions. Avogadro is 
hailed as a founder of the atomic-molecular theory 
[1].   

Despite the fact that Avogadro did not 
specify the ratio of the number of constituent 
particles in a sample to the amount of 
substance, the French physicist Jean Baptiste 

Perrin (1909) proposed naming the constant in 
honor of Avogadro. Jean B. Perrin won the 
Nobel Prize in Physics (1926) in a large part 
for his work in determinig the Avogadro's 
constant. Perrin's method was based on the 
Brouwnian motion [2].  

In the years since then, several 
different methods (coulometry, electron mass 
measurement, x-ray crystal density method) 
have been used to estimate the magnitude of 
this fundamental constant. In general, accurate 
determinations of the Avogadro's number 
require the measurement of a single quantity 
on both the atomic and macroscopic scales, 
using the same unit of measurements. This 
became possible for the first time when 
physicist Robert Millikan measured the charge 
on an electron in 1910. The charge of a mole 
of electrons had been known since 1834, when 
Michael Faraday published his works on 
electrolysis. The charge was called the Faraday 
constant, and the best value of the constant is 
96,485.3383 (3) C/mol, according to the NIST. 
The best estimate of the charge on an electron, 
based on modern experiments, is 
1.60217653·10-19 C/electron. When we divide 
the charge on a mole of electrons by the charge 
on a single electron, we obtain a value of the 
Avogadro's number of 6.02214154·1023 
particles/mole [3]. Since 1910, new 
calculations have more accurately determined 
the value of Farady's constant and elementary 
charge. Another approach to determining 
Avogadro's number starts with careful 
measurements of the density of an ultrapure 
sample of a material on the macroscopic scale. 

In fact, Perrin originally proposed the 
name Avogadro number to refer to the number 
of molecules in one gram-molecule of oxigen, 
and this term is still widely used in 
introductory works. The change of the name to 
Avogadro's constant came with the 
introduction of the mole as a unit in the 
International System of Units (SI) in 1971, 
what recognised amount of substance as an 
independent dimension of measurements. 
Thus, Avogadro's constant was no longer a 
pure number, it now has a unit of 
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measurements, the reciprocal mole (mol-1) 
[4,5]. 
 The Avogadro's constant is a scaling 
factor between macroscopic and microscopic 
observations of nature, and can be applied to 
any substance. The most significant consequence 
of Avogadro's law is that the gas constant has the 
same value for all gases. Because of its role as a 
scaling factor, it provides the relation between 
other physical constant and properties. For 
example, it establishes a relationship between: 
▀ the universal gas constant (Ru) and the 
Boltzmann constant (kB): Ru=kB·NA=8.314472 
(15) J/mol∙K; ▀ the Faradey constant (F) and 
the elementary charge (e): 
F=NA·e=96,485.3383 (3) C/mol, and ▀ the 
Avogadro constant within the definition of the 
unified atomic mass unit (u): 1 u=M/NA= 
1.660538782(83)·10-24 g. 

The Loschmidt number is defined as 
the number of atoms in a gram atom or the 
number of molecules in a gram molecule. In 
literature, this number is frequently referred to 
as the Avogadro’s number. But, the term 
Loschmidt number is reserved for the number 
of molecules in a cubic centimeter of a gas 
under standard conditions. In German language 
literature, it may refer to both constants by the 
same name, distinguished only by the units of 
measurement. The first actual estimation of the 
number of molecules in one cubic centimeter 
of a gas under standard conditions was made in 
1865 by the Austrian physicist Johan Josef 
Loschmidt, a professor at the University of 
Vienna. The density of particles in a gas is now 
called the Loschmidt constant in his honor, and 
is approximately proportional to the Avogadro 
constant. The Loschmidt’s method was based 
on the kinetic theory of gases. The kinetic 
theory was developed with a great success by 
the efforts of two scientists James Clerk 
Maxwell and Rudolph Clausius. Loschmidt 
was the first to estimate the physical size of 
molecules in 1865, but he did not actually 
calculate a value for the constant which now 
bears his name. The Loschmidt number is, by 
virtue of its definition, the same for atoms and 
molecules of all kinds. Though molecules may 

vary in size, shape and mass, the number of 
molecules in a gram molecule is a universal 
constant for all solids, liquids and gases, 
elements and compounds [6]. Thus, the number 
of molecules in a specific volume of gas is 
independent of the size or mass of the gas 
molecules. As an example, equal volumes of 
molecular hydrogen and nitrogen, as ideal gases, 
would contain the same number of molecules, as 
long as they are at the same temperature and 
pressure. 

The Loschmidt constant is usually 
quoted at standard state of substance (i.e., 
temperature T0=273,15 K and pressure 
p0=1atm=1.01325 bar=101325 Pa), and 
recommended value is 2.6867774(47)·1025 

particles/m3. The pressure and temperature can 
be chosen freely, and must be quoted with 
values of the Loschmidt constant. The 
precision to which the Loschmidt constant is 
currently known is limited entirely by the 
uncertainty in the value of the gas constant.                                  

The sound waves are a result of the 
movement of the elastic pieces of the 
substance environment, whether a substance is 
in gaseous, liquid or solid state. A change in 
gas density (or pressure) is transmitted in all 
directions with a certain speed. Number of 
compression and expansion of the 
environment, performed by the sound source 
by a sinuous curve in the unit of time is called 
frequency – unit is the number of cycles per 
second (c/s). The distance between the two 
maximum and minimum values in a sinuous 
curve represents wavelength – unit is the meter 
(m). Pressure changes represent sound 
pressure – the unit is N/m2. Sound energy (J) 
per unit time (s) passing through a unit area 
(m2) normal to the direction of propagation is 
called the intensity of sound waves or 
alternatively the power density – the unit is 
W/m2 [7]. The quantity has a practical 
importance. The human ear is a very sensitive 
organ and at the same time it is very flexible. 
The lower limit of the audible intensity of 
sound is of the order of 10-12 W/m2 and the 
maximum safety limit is the order of 1 W/m2. 
The sound waves intensity of ordinary 
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conversation is the order of 10-6 W/m2, street 
traffic is 10-5 W/m2 and jet plane is 10-2 W/m2. 

Propagation speed of sound waves 
depends only on the properties of the medium 
through which the propagation takes place. 
The speed of sound varies from substance to 
substance, for instance: sound travels most 
slowly in gases (the average gas speed of 
sound is about 330 m/s); it travels faster 
in liquids (the average gas speed of sound is 
about 1,500 m/s); and it travels at the fastest 
speed in solids (the average gas speed of sound 
is about 4,000 m/s). In an exceptionally stiff 

material such as diamond, sound travels at 
12,000 m/s - which is around the maximum 
speed that sound will travel under normal 
conditions. In common everyday speech, speed 
of sound refers to the speed of sound waves 
in air. At 20°C, the speed of sound in air is 
about 343 m/s. The speed of sound in an ideal 
gas depends only on its temperature and 
composition. The speed of sound has a weak 
dependence on frequency and pressure in 
ordinary air, deviating slightly from ideal 
behavior. 

 
 
2. MATHEMATICAL ANALYSIS 
 
2.1. The thermodynamic speed of sound  m/s is defined by the Laplace equation
The thermodynamic speed of sound (i.e., the 
speed of sound at zero frequency) in a fluid u,  
 

2

s

pu


 
=   

                                                          (1a) 

 
where: ρ, kg/m3 is the density of the substance; 
p, N/m2 is the pressure; s, J/kg·K is the specific 
entropy of the substance. Since ρ=1/v, the 

Laplace equation has the following form, 
according to Ref. [8, p.127]: 

 
2 2

s

pu v
v
 = −   

                                                            (1b) 

 
By combining the above equation with 

the important relationship that determines the 
following derivative, rarely mentioned in the 
literature, according to Ref. [8, p.124]: 

 
2

s T vv

p p T p
v v c T
       = −            

                                                    (2) 

it is obtained that 
2

2 2

v Tv

T p pu v
c T v
     = −          

                                                   (3) 

 
An equivalent form of Eq. (3) can be 

found by replacing the derivative (∂p/∂T)v in 
terms of the cyclic equation, according to Ref. 
[9, p.636]:   

 

v p T

p v p
T T v
       = −            

                                               (4) 

so that Eq. (3) results 
2 2

2 2

T p Tv

T p v pu v
c v T v
        = −               

                                           (5) 



41

Mašinstvo 1-4 (19), 37 – 46, (2022)                       N. Neimarlija, M. Bijedić: Matematička i numerička analiza…  
 

4 
 

conversation is the order of 10-6 W/m2, street 
traffic is 10-5 W/m2 and jet plane is 10-2 W/m2. 

Propagation speed of sound waves 
depends only on the properties of the medium 
through which the propagation takes place. 
The speed of sound varies from substance to 
substance, for instance: sound travels most 
slowly in gases (the average gas speed of 
sound is about 330 m/s); it travels faster 
in liquids (the average gas speed of sound is 
about 1,500 m/s); and it travels at the fastest 
speed in solids (the average gas speed of sound 
is about 4,000 m/s). In an exceptionally stiff 

material such as diamond, sound travels at 
12,000 m/s - which is around the maximum 
speed that sound will travel under normal 
conditions. In common everyday speech, speed 
of sound refers to the speed of sound waves 
in air. At 20°C, the speed of sound in air is 
about 343 m/s. The speed of sound in an ideal 
gas depends only on its temperature and 
composition. The speed of sound has a weak 
dependence on frequency and pressure in 
ordinary air, deviating slightly from ideal 
behavior. 

 
 
2. MATHEMATICAL ANALYSIS 
 
2.1. The thermodynamic speed of sound  m/s is defined by the Laplace equation
The thermodynamic speed of sound (i.e., the 
speed of sound at zero frequency) in a fluid u,  
 

2

s

pu


 
=   

                                                          (1a) 

 
where: ρ, kg/m3 is the density of the substance; 
p, N/m2 is the pressure; s, J/kg·K is the specific 
entropy of the substance. Since ρ=1/v, the 

Laplace equation has the following form, 
according to Ref. [8, p.127]: 

 
2 2

s

pu v
v
 = −   

                                                            (1b) 

 
By combining the above equation with 

the important relationship that determines the 
following derivative, rarely mentioned in the 
literature, according to Ref. [8, p.124]: 

 
2

s T vv

p p T p
v v c T
       = −            

                                                    (2) 

it is obtained that 
2

2 2

v Tv

T p pu v
c T v
     = −          

                                                   (3) 

 
An equivalent form of Eq. (3) can be 

found by replacing the derivative (∂p/∂T)v in 
terms of the cyclic equation, according to Ref. 
[9, p.636]:   

 

v p T

p v p
T T v
       = −            

                                               (4) 

so that Eq. (3) results 
2 2

2 2

T p Tv

T p v pu v
c v T v
        = −               

                                           (5) 

Mašinstvo 1-4 (19), 37 – 46, (2022)                       N. Neimarlija, M. Bijedić: Matematička i numerička analiza…  
 

5 
 

or 
1

2 2 2

T p Tv

T p v pv u
c v T v

−
        = −               

                                     (5a) 

 

 
2.2. Relationship among the Loschmidt 
constant, the Avogadro constant, and the 
speed of sound 

 
 

The Loschmidt constant is related to the 
Avogadro constant by relation, according to 
Ref. [10, p.418]: 
 

 
 
 

( )
( ) 3

, 1 particles,
, mL A A A

u

p TpN N N N
R T M v p T M


= = =


,                    (6) 

 
where: NL, particles/m3 is the Loschmidt 
constant; p, N/m2 is the pressure; T, K is the 
temperature; Ru, J/kmol·K is the universal gas 
constant; ρ (p, T), kg/m3 is the density of the 
substance; v (p, T), m3/kg is the specific 
volume of the substance; M, kg/kmol is the 

atomic mass of the substance, and NA, particles 
/kmol is the Avogadro constant. 

Combining Eq. (5a) and (6), we obtain 
relationship among the Loschmidt constant, the 
Avogadro constant, and the speed of sound, in 
the following form: 

 
1
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Since the specific volume and density 
are inversely proportional, that is v=1/ρ, the 

following relation for the partial derivatives is 
obtained: 
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When the previous relations are inserted in Eq. 

(7), relation in the following form is obtained: 
 

1
2 22

21 (8)L

pA v T T

N T p p
N u M c T

 
 

       = +              
                             (8)

                         
 

 

The relative deviations of the NL/NA ratio from 
the literature ratio value 0.04461498 at 
standard state, according to Ref. [3,6], for the 

gases (hydrogen, helium, carbon monoxide, 
carbon dioxide, nitrogen, oxygen, and 
methane) are calculated as follows: 
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N

 
−  

   
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 

                                   (9) 

 
3.  NUMERICAL ANALYSIS  
 
3.1. Numerical analysis of the ratio of the 
constants and the deviation of the NL/NA for 
the ideal gases at standard state (i.e., 
temperature 273.15 K and pressure 101325 
Pa) 
As the first step to confirm the validity of the 
derived equation (8), the ratio of the constants 
NL/NA and the deviation of the NL/NA ratio for 
several ideal gases (hydrogen, helium, carbon 
monoxide, argon, nitrogen, oxygen, carbon 
dioxide, methane) were calculated using the 
ideal gas equations of state (Pv=RT). Namely, 
the PvT behavior of many gases at low 
pressures and moderate temperatures can be 
modeled quite well by the ideal gas equation of 
state. For example, nitrogen approximates  
 

 
 
ideal behavior over a wide range of pressures 
up to 30 atm; argon begins to deviate after 
about 10 atm, and carbon dioxide is essentially 
independent of pressure only at extremely low 
pressures at a given temperature. Nevertheless, 
for monatomic and diatomic gases, the ideal 
gas eqution is usually a good approximation up 
to pressures of 10 to 20 atm at room 
temperature and above, for errors in accuracy 
not exceeding several percent, according to 
Ref. [9]. The maximum pressure at which a gas 
can be modeled by the ideal gas equation of 
state depends on the desired degree of 
accuracy. 

If gases are ideal, the partial 
derivatives in equation (8) have the form: 

 

( ) ( )3

Pa, 10a
kg mT

p RT


 
=  

                              
and 

( )2 3
kg, 10b

m Kp

p
T RT
  = −  

 

The speed of sound in ideal gases is 
calculated using equation (3), and the 

corresponding partial derivatives of the ideal 
gas equation (Pv=RT) are:                                       

 

( )Pa, 11a
Kv

p R
T v
  =    

and 

( ) ( )2 3

Pa, 11b
m /kgT

p RT
v v
  = −  
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Table 1 The data, the speed of sound and the partial derivatives

 

of the ideal gas equation

  

Gas cv, J/kgK R, J/kgK v, m3/kg M, 
kg/kmol (∂p/∂T)v,Pa/K 

eq. (11a)
 

(∂p/∂v)T, Pa/(m3/kg) 
eq. (11b) 

u, m/s; 
eq.(3) 

Data according to Ref. [9,11] 
H2 10070.55 4125 11.1256  2.01588 370.7655 -9102.8686 1258.203 
He 3116.176 2079 5.60284 4.002602 371.0618 -18090.0285   972.96 
CO 743.170 297 0.799679 28.0101 371.399 -126860.457   337.01 
N2 742.885 296.7 0.799753 28.013 370.989 -126708.863   336.839 
O2 655.221 259.9 0.699774 31.9988 371.405 -144974.587   314.695 
CO2 632.016 189 0.505865 44.0098 373.617 -201740.802   257.963 
CH4 1656.75 518.8 1.393808 16.0428 372.217 -72944.956   429.047 

 
Table 2 The NL/NA ratio calculations for the ideal gases

 

 

Gas (∂p/∂ρ)T,Pa/(kg/m3) 
eq. (10a)

 

(∂ρ/∂T)p, kg/m3K 
eq. (10b) 

NL/NA;   
eq. (8) 

(NL/NA)Ref.[3,6] - 
(NL/NA)gas 

∆(NL/NA), %;   
eq. (9) 

H2 1126743.75 -0.000329223 0.0446670296  -0.0000520486 -0.116664 
He   567878.85 -0.0006532 0.04458756     0.00002742  0.061459 
CO     81125.55 -0.00457254 0.0446234316    -0.0000084516 -0.0189434 
N2     81043.605 -0.004577165 0.0446247865   -0.0000098065 -0.02198028 
O2     70991.685 -0-00522526 0.04469970413   -0.00008472413 -0.1899006 
CO2     51625.35 -0.0071854 0.04501832124    -0.00040334124 -0.9040489 
CH4   141710.22 -0.002617666 0.0449278715    -0.0003128915 -0.70131489 

 
The calculation of the ratio of the constants 
NL/NA and the deviation of the NL/NA ratio for 
the ideal gases at standard state (i.e., 
temperature 273.15 K and pressure 101,325 
Pa) are in a good agreement with the results in 
literature, given the fact that the literature data 
of the NL/NA ratio is 0.04461498 at standard 
state. Table 2 presents the absolute and 
relative deviations of the NL/NA ratio for the 

ideal gases, calculated using equations (8) and 
(9) at standard state in relation to the reference 
value 0.04461498 from Ref. [3,6] for the same 
condition. Thus, Table 2 shows that the 
absolute deviation ranges from 0.0000084516 
for carbon monoxide to 0.00040334124 for 
carbon dioxide, while the relative deviation 
ranges from 0.0189434% for carbon monoxide 
to 0.9040489% for carbon dioxide.  

 
 
3.2. Numerical analysis of the ratio of the 
constants and the deviation of the NL/NA for 
the real gases at standard state (i.e., 
temperature 273.15 K and pressure 101325 
Pa) 
As the second step to confirm the validity of 
the derived equation (8), the ratio of the 
constants NL/NA and the deviation of the NL/NA 
ratio for several real gases (hydrogen, helium, 
carbon monoxide, nitrogen, oxygen, carbon 
dioxide, methane) were calculated using the 
Van der Waals equation of state, according to 
Ref [9].  

In 1873, Van der Waals proposed an 
equation of state, what was the first attempt to 
correct the ideal gas equation, so that it would 
be applicable to real gases. On the bases of 

simple kinetic theory, particles are assumed to 
be point masses, and there are no 
intermolecular forces among particles. As the 
pressure increases on a gaseous system, the 
volume occupied by the particles may become 
a significant part of the total volume, and 
intermolecular attractive forces become 
important under this condition. To account for 
the volume occupied by the particles, Van der 
Waals proposed that the specific volume in the 
ideal gas equation to be replaced by the term v-
b. Also, the ideal pressure was to be replaced 
by the term P+a/v2. Thus, the Van der Waals 
equations of state are: 
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( ) ( )2 12m u
m

ap v b R T
v

 
+ − = 

   
or 

( )3 2 0 13u
m m m

R T a bv b v v a
p p p

 
− + + − = 
   

or 

( )3 2 1 0 14u
m m m

R T a bb a
p p p

  − − − 
− + + − = 
   

 

where:  p, bar is the pressure; ρm (p, T), 
kmol/m3 is the molar density of the substance; 
vm (p, T), m3/kmol is the molar specific volume 
of the substance; a, bar∙(m3/kmol)2 is constant; 

b, m3/kmol is constant;  Ru, J/kmol·K is the 
universal gas constant. 

If gases are real, the partial derivatives 
in equation (8) have the form: 

 

( )
( ) ( )

2 5

2 2 3

3 2 2 10 Pa, (15)
kg m

m u m m

T m u m m

p p bp R T ap
MR T a ab

  

   

− − + 
=   − +   

and 

( )
2

2 3
kg, 16

3 2 2 m K
u m

p m u m m

R M
T p bp R T a


  

  =   − + + −   
 

The speed of sound in real gases is 
calculated using equation (3), and the 

corresponding partial derivatives of Van der 
Waals equation (13) are:                                       

 

( )Pa, 17
K

u

v m

Rp
T v b
  =  −   

and 

( ) ( ) ( )5
2 3 3

2 Pa10 , 18
m /kg

u

T mm

R Tp a M
v vv b

   = − +      −    

Table 3 The calculation of the speed of sound for the real gases using Van der Waals equation    

 

Gas 
a, 

bar(m3/kmol)2 
b, 

m3/kmol 
ρm, 

kmol/m3 
M, 

kg/kmol (∂p/∂T)v, Pa/K 
eq. (17)

 

(∂p/∂v)T, Pa/(m3/kg) 
eq. (18)

 

u, m/s; 
eq.(3) Data according to Ref. [9,11] 

H2 0.247 0.0265 22.4281 2.01588 371.1795 -9114.844 1261.261 
He 0.0341 0.0234 22.426 4.002602 371.162 -18111.345 973.458 
CO 1.463 0.0394 22.3991 28.0101 371.874 -126516.944 336.7637 
N2 1.361 0.0385 22.4035 28.013 371.786 -126521.44265 336.7949 
O2 1.369 0.0315 22.3919 31.9988 363.8119 -144557.668 312.741 
CO2 3.643 0.0427 22.2630 44.0098 366.106 -199541.173 256.6828 
CH4 2.285 9.0427 22.3605 16.0428 372.566 -72498.121 430.465 
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Table 4 The NL/NA ratio calculations for the real gases using Van der Waals equation                

 

 

Gas (∂p/∂ρ)T,Pa/(kg/m3) 
eq. (15) 

(∂ρ/∂T)p, kg/m3K 
eq. (16) 

NL/NA; 
eq. (8) 

(NL/NA)Ref.[3,6] - 
(NL/NA)gas 

∆(NL/NA), %; 
eq. (9) 

H2 1112900.794 -0.000329119 0.0442006  0.00041438  0.92879 
He   567411.299 -0.000653797 0.04455534  0.00005964  0.133677 
CO    81031.722 -0.004591028 0.044674349 -0.000059369 -0.1330696 
N2    81061.654 -0.00460508 0.0447150155 -0.0001000355 -0.2242195 
O2   70864.336 -0.00524875 0.0449547837 -0.0003398037 -0.76163589 
CO2   50086.82 -0.00736251 0.0446578458 -0.0000428658 -0.096079388 
CH4 140915.435 -0.002642338 0.0447241547 -0.0001091747 -0.2447041 

 
The calculation of the ratio of the constants 
NL/NA and the deviation of the NL/NA ratio for 
the real gases at standard state (i.e., 
temperature 273.15 K and pressure 101,325 
Pa) are in a good agreement with the results in 
literature, given the fact that the literature data 
of the NL/NA ratio is 0.04461498 at standard 
state. Table 4 presents the absolute and 
relative deviations of the NL/NA ratio for the 

real gases calculated using Vder Waals 
equation at standard state in relation to the 
reference value 0.04461498 from Ref. [3,6] for 
the same condition. Thus, Table 4 shows that 
the absolute deviation ranges from 
0.0000428658 for carbon dioxide to 
0.00041438 for hidrogen, while the relative 
deviation ranges from 0.096079388% for 
carbon dioxide to 0.92879% for hidrogen.  

 
4.  CONCLUSION 
▀ The contribution of the paper is in the 
derivation of equation (8), which defines the 
analytical relationship between the Avogadro 
and Loschmidt numbers as a function of the 
speed of sound and pvT (the thermodynamic 
properties of the gas). The Loschmidt constant 
is approximately proportional to the Avogadro 
constant, according to Ref. [6], which is also 
numerically confirmed for ideal and real gases 
(hydrogen, helium, carbon monoxide, carbon 
dioxide, nitrogen, oxygen, and methane) in the 
paper. 
▀ The number of particles (atoms or molecules) 
in the same volume for all gases is equal at the 
same temperature and pressure. The conclusion 
is based on the fact that the NL/NA ratio is 
calculated using equation (8) and it is almost 
the same for all considered gases. Namely, the 
absolute differences appear on the fourth 
decimal place for the considered gases. This 
conclusion corresponds to the Avogadro's 
hypothesis that equal volumes of all gases at 
the same temperature and pressure contain the 
same number of molecules. 
▀ The speed of sound is different in gases under 
the same pvT (the thermodynamic properties of 
the gas), even though in these circumstances 
all gases have the same number of particles in 
the same volumes (Avogadro's hypothesis). 
Thus, it is clear that the speed of sound in 
gases depends on the type of gas (i.e., 
molecular weight and heat capacity of the gas) 
and temperature. In other words, all gases 
under the same pvT (the thermodynamic 

properties of the gas) have the same number of 
particles (atoms or molecules) in equal 
volumes, but in these circumstances have 
different speed of sound. 
▀ The explanation of the previous conclusion is 
possible by analogy with the conduction of 
thermal energy in gases. Sound is an energy 
form, as is a thermal energy. Thus, the 
propagation of sound in gases can be compared 
to the propagation of thermal energy. In the 
theory of heat transfer in gases and liquids, 
there are very successful correlations between 
the coefficient of heat conduction and the 
speed of sound in these fluids. It can be 
observed that the heat conduction coefficient 
of gases is several times higher for hydrogen 
and helium, compared to the coefficients of 
other gases, and that the same goes for the 
speed of sound. This is explained by the fact 
that hydrogen and helium have small 
molecular masses compared to other gases and, 
therefore, have a higher mean velocity of 
elementary particles in volume, what is 
directly proportional in functional relations to 
both the coefficient of heat conduction and the 
speed of sound in gas. Thus, the mean velocity 
of elementary particles in the volume of a gas 
directly and in the same way affects both the 
conduction of thermal energy and the 
propagation of sound. 
▀ Experimental data indicate the fact that the 
speed of sound in gases increases as preassure 
increases, i.e., gas density. On the other hand, 
according to the kinetic theory of gases, 
increasing the pressure (density) of a gas 
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reduces the mean trajectory of a particle (atom, 
molecule) during the interval between two 
collisions. This indicates the increase of gas 
pressure (density) will not have as significant 
impact on the increase of the speed of sound in 

the gas as the type and temperature of the gas, 
because in functional relations the density and 
mean particle path between two collisions are 
proportional to both the heat conduction 
coefficient and the speed of sound. 
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